Current position: Home - Academic Activities
A delayed diffusive logistic population model with nonzero Dirichlet boundary condition
Release time:2022-05-16 Hits:
Academic forum introduction:

报告题目:A delayed diffusive logistic population model with nonzero Dirichlet boundary condition

报告人:陈玉明教授(加拿大劳瑞尔大学)

报告时间:2022年5月18日(星期三)上午08:00-10:00

报告地点:腾讯会议ID:986 482 436

报告摘要:We investigate a diffusive logistic equation with non-zero boundary Dirichlet condition and two delays. We first exclude the existence of positive heterogeneous steady states, which implies the uniqueness of constant positive steady states. Then, we analyze the local stability and local Hopf bifurcation at the unique constant positive steady state. We show that multiple delays can induce multiple stability switches. Furthermore, we prove global stability of the positive steady state under certain conditions and obtain global Hopf bifurcation results. Numerical simulations have been carried out to illustrated the obtained theoretical results. This is a joint work with Xuejun Pan and Hongying Shu.

报告人简介:陈玉明,分别于1991年和1994年从北京大学获应用数学学士学位和硕士学位,并于2000年从加拿大约克大学(York University)获理学博士学位,2000年9月至2001年6月在加拿大阿尔伯塔大学(University of Alberta)做博士后。从20001年7月起,一直任教于加拿大罗瑞尔大学(Wilfrid Laurier University)。现为该校数学系正教授、博士生导师。主要研究兴趣为动力系统和泛函微分方程理论及其在生物数学和神经网络中的应用。已在包括SIAM Journal on Mathematical Analysis, Transactions on the American Mathematical Society, Nonlinearity, Journal of Differential Equations, Physica D, Proceedings of the American Mathematical Society,Mathematical Biosciences, Neural Networks等国际著名刊物发表论文一百四十余篇,其成果被同行广泛引用,曾获安大略省科技与创新部早期研究者奖。主持了5项加拿大国家自然科学与工程理事会(NSERC)科研基金项目,参与了3项中国国家自然科学基金面上项目。积极参与高质量人才如硕士生、博士生、博士后的培养。陈教授与中国学者有广泛交流与合作。