Current position: Home - Academic Activities
Ambrosetti-Prodi problems for Robin (p,q)-equations
Release time:2022-06-20 Hits:
Academic forum introduction:

报告人:Radulescu D. Vicentiu 教授

报告时间:2022年6月20日, 16:00-18:00

报告地点:腾讯会议 360-308-572

报告题目 :Ambrosetti-Prodi problems for Robin (p,q)-equations

摘要: In this talk, I shall report about a recent paper in collaboration with Nikolaos Papageorgiou and Jian Zhang (NONRWA, 2022). The classical Ambrosetti–Prodi problem considers perturbations of the linear Dirichlet Laplace operator by a nonlinear reaction whose derivative jumps over the principal eigenvalue of the operator. In this talk, we develop a related analysis for parametric problems driven by the nonlinear Robin (p, q)-Laplace operator. Under hypotheses that cover both the (p − 1)-linear and the (p − 1)-superlinear case, we prove an optimal existence, multiplicity, and non-existence result, which is global with respect to a suitable positive parameter.

报告人介绍:Radulescu D. Vicentiu, 克拉约瓦大学教授、罗马尼亚国家科学院终身教授。博士毕业于巴黎六大,师从世界著名偏微分方程专家Haim Brezis教授。Radulescu教授主要从事非线性椭圆方程、带退化和奇异线性的数学物理方程、非齐次微分算子的谱分析及其在电流变液中的应用等工作,尤其在非线性分析和非线性椭圆型偏微分方程方面有着很深的学术造诣和威望,出版专著10余部,在国际著名期刊 J. Math. Pures Appl.、Transactions Amer. Math. Soc.、Comm. Partial Differential Equations、J. Differ. Equ.、Nonlinearity、Ann. Scuola Norm. Sup. Pisa, Cl. Sci.、Israel J. Math.、Calc. Var. Partial Differ. Equ.等发表高水平和高影响的学术论文300余篇,多次主持罗马尼亚国家科学研究委员会科研项目。Radulescu教授是Thomson Reuters高被引研究者,论文被引用次数高达6000余次,应邀主题发言、大会报告和邀请报告50余次,得到了国际学术界的高度认可,并作为大会主席组织了多个专题国际学术大会,同时担任多个国际SCI期刊的主编或编委。